5.6.5 The Pareto Distribution

If X is an exponential random variable with rate λ and a > 0, then

$$Y = ae^X$$

is said to be a *Pareto* random variable with parameters a and λ . The parameter $\lambda > 0$ is called the index parameter, and a is called the minimum parameter (because $P\{Y > a\} = 1$). The distribution function of Y is derived as follows: For $y \ge a$,

$$P(Y > y) = P(ae^{X} > y)$$

$$= P(e^{X} > y/a)$$

$$= P(X > \log(y/a))$$

$$= e^{-\log(y/a)}$$

$$= e^{-\log((y/a)^{\lambda})}$$

$$= (a/y)^{\lambda}$$

Hence, the distribution function of Y is

$$F_Y(y) = 1 - P(Y > y) = 1 - a^{\lambda}y^{-\lambda}, \quad y \ge a$$

Differentiating the distribution function yields the density function of Y:

$$f_{\gamma}(y)=\lambda a^{\lambda}y^{-(\lambda+1)},\quad y\geq a$$

When $\lambda \leq 1$ it is easily checked that $E[Y] = \infty$. When $\lambda > 1$,

$$E[Y] = \int_{a}^{\infty} \lambda a^{\lambda} y^{-\lambda} dy$$
$$= \lambda a^{\lambda} \frac{y^{1-\lambda}}{1-\lambda} \Big|_{a}^{\infty}$$
$$= \lambda a^{\lambda} \frac{a^{1-\lambda}}{\lambda-1}$$
$$= \frac{\lambda a}{\lambda-1}$$

 $E[Y^2]$ will be finite only when $\lambda > 2$. In this case,

$$E[Y^{2}] = \int_{a}^{\infty} \lambda a^{\lambda} y^{1-\lambda} dy$$
$$= \lambda a^{\lambda} \frac{y^{2-\lambda}}{2-\lambda} \Big|_{a}^{\infty}$$
$$= \frac{\lambda a^{2}}{\lambda - 2}$$

Hence, when $\lambda > 2$

$$Var(Y) = \frac{\lambda a^2}{\lambda - 2} - \frac{2^{\lambda} a^2}{(\lambda - 1)^2} = \frac{\lambda a^2}{(\lambda - 2)(\lambda - 1)^2}$$

Remarks (a) We could also have derived the moments of Y by using the representation $Y = ae^X$, where X is exponential with rate λ . This yields, for $\lambda > n$,

$$\lambda = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty}$$

- (b) Where the density function f(y) of the Pareto is positive (that is, when y > a) it is a constant times a power of y, and for this reason it is called a *power law density*.
- (c) The Pareto distribution has been found to be useful in applications relating to such things as
 - i. the income or wealth of members of a population;
 - ii. the file size of internet traffic (under the TCP protocol);
 - iii. the time to compete a job assigned to a supercomputer;
 - iv. the size of a meteorite;
 - v. the yearly maximum one day rainfalls in different regions.

Further properties of the Pareto distribution will be developed in later chapters.